
STO-MP-IST-148 8 - 1 

Metrics for Cyber Robustness 

F.Baiardi1, F.Tonelli1 and A.Bertolini2, M.Montecucco2
1Department of Computer Science, University of Pisa 

2Haruspex S.R.L. 
ITALY 

1{baiardi,tonelli}@di.unipi.it  
2{alessandro.bertolini,marcello.montecucco}@haruspex.it 

ABSTRACT  

Cyber robustness measures how long an ICT system can resist to attackers that compose attacks to escalate 
their privileges till reaching their goals. This paper proposes three metrics to evaluate this ability. The basic 
one is the security stress that considers the probability that an attacker reaches a predefined goal in a time 
interval. The relation between the interval size and the probability evaluates the overall robustness. This 
metric is the starting point to define two metrics that evaluate cyber robustness through the financial impact. 
We approximate the security stress using the output of the Haruspex suite. The suite tools forecast how a 
system is attacked by simulating the interaction between the system and some attackers. The output of the 
suite supports both the computation of the metrics and the design of more robust versions. Lastly, we apply 
the metrics to compare three versions of an industrial control system. 
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1.0 INTRODUCTION 

Cyber robustness is the ability of an information and communication technology (ICT) system of resisting to 
intelligent and goal oriented attackers, i.e. advanced persistent threats. Attackers increase their privileges, 
e.g. access rights, through a privilege escalation. An escalation is a sequence of attacks that ends when the 
attacker acquires a predefined set of rights, its goal, and controls some system resources. The only 
countermeasure against an attacker that has reached a goal is to revoke some of the privileges it has acquired.  

This paper defines some metrics to quantify cyber robustness. These metrics strongly contribute to cyber 
awareness as they anticipate how a system can resist to its attackers. Furthermore, they can drive a security 
investment by supporting a comparison of alternative versions of a system with respect to this ability.  

The first metric is the security stress or simply stress at a time t. This metric is equal to the probability that an 
attacker reaches its goal at time t. This relates the success probability of an attacker and the time it has 
available to implement its escalations. In turn, this time depends on the alternative escalations an attacker can 
implement, the number of attacks in these escalations, and the attack success probabilities.  

Then, we introduce an impact function to map into a loss the time interval an attacker owns some access 
rights. We use the stress and the impact to define two financial metrics, AvLoss and CyVar. Both metrics 
evaluate the loss at a time t due to an attacker that control some system components and neglect the one due 
to the attacks in an escalation. These metrics splits t into two times, the one the attackers take to reach a goal 
and the one they own the corresponding rights. We compute the probability to reach a goal in an interval 
through the stress. 

AvLoss measures the expected loss at a time t as the weighted sum of the losses due to distinct attackers. The 
weight of each loss is the probability that the attacker reaches a goal at t. This probability is the first order 
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derivative of the stress due to the attacker.    

CyVar evaluates the loss more accurately by extending Value-At-Risk or VAR, a risk measure for a security 
investment. VAR focuses on the odds of losing money and it has three inputs: a time t, a confidence level c, 
and a loss amount l and it  returns the probability the investor loses more than l at t. c is confidence level of 
this probability. CyVar returns the same information for attackers that escalate their privileges.  

A fundamental input for all the metrics is the probability an attacker reaches a goal in a time interval. Since 
there is not a closed form expression to compute or even approximate this probability, we adopt a Monte 
Carlo method and the Haruspex suite. The Haruspex suite supports a model based ICT risk assessment and 
management. It builds a statistical sample to compute the statistics to assess and manage ICT risk by 
applying a Monte Carlo method with multiple simulations of how the attackers escalate their privileges when 
attacking an ICT system. The sample enables the assessment to forecast the behaviour of the attackers, to 
discover which vulnerabilities they exploit, and to compute the probabilities of interest. Obviously, distinct 
approaches and tools may be adopted to apply the proposed metrics. 

We structure this paper as follows. Sect.2 briefly reviews related works. Sect.3 outlines the Haruspex 
methodology and the tools that return information to compute the metrics of interest. Sect.4 defines the 
security stress and its approximation through the outputs of Haruspex tools. Then, it discusses alternative 
definitions of the impact function. Sect.5 briefly analyses a paradox on the return of a security investment. 
Both the following sections define a financial metric. Then, Sect.8 applies these metrics to three alternative 
versions of an industrial control system and it evaluates both the versions and the cost effectiveness of the 
investment to change one version into another. Lastly, we draw some conclusions. 

2.0 RELATED WORKS 

This work extends and generalizes [1,2] that defined, respectively, the security stress and CyVar. The 
Haruspex suite generalizes adversary simulation [3]. [4-8] describe the suite tools, their application, and how 
they automate ICT risk assessment and management. [9-12] discusses the simulation of privilege escalations. 
[13] reviews attack and defence modeling for critical systems. [14] analyzes multi-step attacks, i.e. 
escalations, and reconstructs the attacker steps using its traces and a predefined attack ontology. [15] presents 
a model based approach to simulate attacks to collect information on resiliency. 

[16] reviews resilience metrics for cyber systems. [17-19] define some robustness metrics without integrating 
them with the simulation of the attacks. The metric in [20] focuses on zero-day vulnerabilities while [21] 
proposes metrics for cyber defence but it consider attacks in isolation without relating them with attacker 
escalations. [22-26] review alternative security metrics. [27] reviews security metrics for software 
development. [28] defines a metric similar to the security stress as it considers the amount of work to attack 
a system. Also [29] considers the adversary work. [30,31] investigate the relation between metrics and 
security investments. [32] analyzes the optimal security investment. [33] considers attacks against 
smartgrids. [34] discusses how to evaluate and improve resiliency of critical infrastructures. 

3.0 THE HARUSPEX SUITE 

This section outlines both the Haruspex methodology and the suite. Then, it introduces the tools to support 
the defined metrics.  

Haruspex1 is a model based methodology that adopts a predictive method to compute the probabilities to 
assess and manage risk. This is one of the three methods the IEC 31010 standard [35] suggests. Furthermore, 

                                                      
1 An ancient Tuscany forecaster 
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Haruspex supports security-by-design because it can build even before a system deployment the models of 
the system and of the attackers it uses to assess and manage ICT risk. 

The Haruspex suite is an integrated set of tools to apply the Haruspex methodology to a scenario where 
intelligent attackers select and implement a sequence of attacks to escalate their privileges and control some 
modules of an ICT system. The suite kernel consists of four tools: the builder, the descriptor, the engine and 
the manager. The first two tools build the model of the system and the one of each attacker in the scenario 
using simple and easily measurable parameters, such as the vulnerabilities in each system module, the 
attacks they enable, and the success probability of each attack. The model of each attacker is an agent with 
some attributes that describe its goals, the access rights it aims to acquire and its preferences. After building 
the models, an assessment discovers the escalations of each attacker by applying the engine, the suite tool 
that simulate the behaviour of the attackers against the target system. The simulation preserves the overall 
scenario complexity and the interactions between the target system model and those of the attackers mimic 
how the latter escalate their privileges. The manager is a risk management tool that iteratively selects some 
countermeasures and invokes the engine to evaluate how they affect the overall risk. Then, it improves the 
selection and starts a new iteration. This resembles an extensive form game [36]. In each game iteration, the 
manager is a player that selects the cheapest countermeasures against a set of escalations to produce a new 
system version, while the engine is a player that implements the agent escalations against this version. In the 
next iteration, the manager considers a set of escalations that includes also those the engine has 
implemented. The game ends as soon as the engine cannot implement an escalation or the manager cannot 
stop some escalations. This tool is not analysed in the following because cannot redesign the whole system. 

3.1 Modelling a System and the Attackers 

We describe in more details the Haruspex models to simulate the target system and the attackers [36]. 
Haruspex models the target system as a set of interconnected modules. Each module defines some operations 
to be invoked by the users and the other modules if and when they own the corresponding access rights. To 
describe social engineering attacks such as phishing, some modules model the users or the system 
administrators.  The target system model describes each module, its vulnerabilities, and the attacks they 
enable.  The input to build the system models include a complete list of all its vulnerabilities. The assessment 
can also introduce some suspected vulnerabilities and pair each of these vulnerability with the probability it 
becomes public when the system is under attack. This supports a what-if analysis of how suspected 
vulnerabilities affect the overall risk. 

The module vulnerabilities enable some attacks. An attack consist of some actions that Haruspex models 
through some attributes. Two attributes describe, respectively, the privileges to execute the actions and those 
an attacker acquires anytime the attack is successful. Other attributes include the time to execute the actions 
and their success probability. This probability depends on both the attacker and the action complexity. 

Haruspex assumes that no single attack grants all the rights in a goal and that the attacker can reach any of its 
goals through a sequence of attacks. Each attack grants some access rights that enable the execution of the 
following attacks in the escalation till the attacker acquires all the rights in a goal. 

Being intelligent, attackers select their escalations according to their preferences. Haruspex models an 
attacker through an agent ag. The attributes of ag describe the attacker legal privileges, its goals, and the 
information on the target system it has available. Two attributes, the selection strategy of ag and the look-
ahead, 𝜆(ag), a non-negative integer, models how the attacker selects the attacks in its escalations. The 
selection strategy defines how the attacker ranks alternative attack sequences, while 𝜆(ag) defines the length 
of the sequences it ranks. ag randomly selects the attacks in an escalation if 𝜆(ag)=0. Otherwise, ag selects 
the sequence to implement by ranking all those with, at most, 𝜆(ag) attacks. We use sequences rather than 
escalations because they may grant a proper subset of the rights in a goal only. The strategy ranks any 
sequence ag can implement by exploiting its current access rights and it always returns a sequence that leads 
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to a goal, if it exists. When its current set of rights is small, ag cannot implement a sequence that leads to a 
goal. Here, the strategy ranks the sequences according to the attributes of their attacks. An assessment pairs 
each agent with a predefined selection strategy that may consider distinct attributes, as an example:  

 maxProb: considers the success probability of a sequence;

 maxIncr: considers the number of rights the sequence grants;

 maxEff: considers the ratio between success probability and execution time of a sequence.

There is no guarantee that any of these strategies always returns a sequence leading to a goal. 

An attacker runs a vulnerability scanning of some nodes to discover the vulnerabilities enabling the attacks 
in the sequences it ranks. Hence, larger values of 𝜆(ag) increase the selection time due to the scanning of a 
larger number of nodes. This shows that 𝜆(ag) describes how ag solves the "collect or exploit" dilemma an 
attacker faces when deciding whether to collect further information or exploit the available one to select an 
attack. We have experimentally verified that look-ahead values larger than 3 force the evaluation of longer 
sequences without improving the ranking.   

The continuity defines the number of attacks in a sequence ag implements before invoking again its strategy. 
A low continuity exploits at best newly discovered vulnerabilities at the cost of a larger selection overhead. 

3.2 The Engine 

This tool generalizes adversary simulation as it uses the models of the target system and of the agents in a 
scenario to forecast the behaviour of each attacker against the target system. The tool adopts a Monte Carlo 
method by implementing an Haruspex experiment with multiple independent runs. Each run simulates the 
behaviours of the agents for the same time interval. When a run begins, each agent only owns the legal 
privileges of the attacker it models. A run ends either when all the agents reach one of their goals or at the 
end of the interval.  

At each time step, the engine determines the suspected vulnerabilities the agents discover. Then, it considers 
each idle agent and it invokes its strategy. The agent is busy for the time to select a sequence plus the one to 
implement a number of attacks equal to its continuity. The engine determines the success of an attack 
according to the attack attributes and, if it is successful, the agent acquires the corresponding privileges. An 
agent repeats a failed attack for a number of times equal to its persistence, a further attribute. The agent 
considers the next sequence in the ranking when the number of failures of the same attack reaches its 
persistence. An agent is idle anytime it cannot select an attack because it lacks some privileges and it may 
leave this state only after the discovery of a suspected vulnerability.  

At the end of a run, the engine collects observations on each agent escalation, the modules it has attacked and 
any goal it has reached. The observations collected in all the runs build the sample that is the tool output and 
that the assessment uses to compute the statistics of interest. The confidence level of each statistic increases 
with the number of runs in the experiment because the engine collects one observation in each run. The 
engine starts a new run till some predefined statistic reaches the required confidence level. The statistics may 
consider, among others, the modules an agent attacks or the time it takes to reach a goal. 

3.3 Validation of the Suite 

The accuracy of the suite predictions fully depends on the suite ability to mimic in an accurate way the 
attacker behaviours. Validating the tools with respect to real attackers is rarely possible because data on real 
attacks is seldom available. For this reason, we have validated the suite in some real-time network exercises 
where some defending teams were put against one attacking team, the red team. The exercise scenario 
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considers a fictional country which industry fell under increasing cyber attacks. Day 1 started with low-level 
hacktivist campaigns and led to espionage and sabotage attacks against the networks of the defenders by the 
end of day 2. In addition to technical defence, the exercise includes tasks such as legal assignments and 
forensics challenge, to make it as lifelike as possible. The exercise is built up as a competitive game that 
scores defending teams based on their performance.  

One of the teams has used the Haruspex suite to analyse the system to defend and to select the vulnerabilities 
to patch. Patching vulnerabilities before the red team begins its attacks is the only feasible countermeasure. 
Since the time to deploy the patches is low, the cost of a patching is the time to apply it and the manager 
minimizes the time to apply the patches it returns.   

The only input we could feed to the suite is a vulnerability scanning of the nodes to defend. Lack of time has 
prevented an analysis of the module source codes. The scanning has posed a further problem because the 
exercise rules prevents any defender team from scanning some nodes that can even store malware to attack 
other nodes. This contradicts the basic Haruspex axioms that an assessment has a complete information on 
any target system module. We have solved this contradiction by assuming that the red team fully controls 
these nodes and use them to launch some attacks.   

We have considered agents that aim to control the system resources  more valuable to the defender. To 
model that agents fully exploits any information they acquire, 𝜆(ag)=3 for any ag. To handle uncertainty 
about the red team selection strategy, we have applied the Haruspex standard approach to manage lack of 
information on some attributes. This approach introduces distinct agents for each possible attribute value and 
then considers the worst case. In the exercise, the tools have considered all the escalations of these agents 
and have computed the optimal list of vulnerabilities to patch in the time interval before the attacks of the red 
team. The team members manually applied the patches.   

The target system is affected by more than one thousand vulnerabilities. The manager returns a list with less 
than 2% of these vulnerabilities. This confirms the engine ability of forecasting the attacker behaviours and 
of discovering the critical vulnerabilities the attackers exploit even in the presence of a huge number of less 
important vulnerabilities. Most alternative approaches focus on the discovery of all the escalations before 
selecting the critical ones and have to face the huge complexity of discovering any escalation. The Monte 
Carlo method minimizes the overall complexity by discovering the most frequent escalations.    

The team that has applied the Haruspex suite has scored excellent results as far as concerns network defence. 

4.0 SECURITY STRESS AND IMPACT 

This section defines the security stress, or stress and the impact. The stress evaluates the cyber robustness a 
system S in term of the probability that some attackers reach a goal in a time interval. It is an autonomous 
metric and the next sections use it to define financial metrics too. Instead, the impact maps the time an 
attacker owns some access rights into the corresponding owner loss. In the following, we denote an attacker 
by at, by sg the goals of at, and by g one goal in sg. 

4.1 Security Stress 

We define StrS
at,sg(t) , the security stress of S at t due to at that aims to reach any goal in sg . If PrSuccS

at,sg(t) 
is the probability that at selects and implements an escalation that reaches a goal in sg within t then,   

StrS
at,sg(t)=PrSuccS

at,sg(t)  

PrSuccS
at,sg(t) is the sum, for all the possible escalations, of the probability each escalation is successful at t 
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under the condition at selects it. The probabilities of selecting two distinct sequences are not independent 
because they both depend on the priorities and preferences of at.  We cannot deduce a closed form 
expression for PrSuccS

at,sg(t ) because of the complexity of computing the probabilities that determine 
PrSuccS

at,sg(t) namely the one that each sequence of attacks is successful and the one that ag selects each 
sequence. For the moment being, we focus on the security stress properties and discuss its computation in 
the following. Being a probability distribution, StrS

at,sg(t) is monotone, non-decreasing in t and 
StrS

at,sg(0)=0. StrS
at,sg(t) increases with t for two reasons. First of all, at can implement longer escalations, 

i.e. it can reach a goal through a longer sequence of attacks. In general, this sharply increases the stress. 
The second reason is that a larger value of t can tolerate a larger number of attack failures.  
 
Consider an attacker at that does not need to run a vulnerability scanning as it already knows the 
vulnerabilities of S. at can reach the only goal in sg by implementing two escalations that include, 
respectively, three and four attacks. Each attack takes two time units and its success probability is 0.5. 
StrS

at,sg(t) is zero if t is smaller than 6, while StrS
at,sg(t) is, at most, 1/8 for any t∈[6..8) because at can 

implement one of the two escalations provided that all the attacks are successful. The stress is lower than 
1/8 any time ag may select some sequences that do not lead to its goal. StrS

at,sg(t) is at most 6/16 for any 
t∈[8..10) because in 0..t  at can implement any of the two escalations, provided that at most one attack in 
the first one fails. This occurs with a probability equal to 3/8. Several reasons can reduce the stress. As an 
example, at may select a sequence that does not lead to a goal or need some time to scan the node of S.  
  
We discuss in more details how some attributes of S and of at influence StrS

at,g by considering two times:  

 t0 is the shortest time where StrS
at,sg(t)>0,  

 t1 is the shortest time where StrS
at,sg(t) ≈ 1.  

t0 is the time to implement the shortest escalation to a goal in sg,  while at is always successful for times 
larger than t1. We require that StrS

at,sg(t) ≈ 1 because StrS
at,sg(t) may reach 1 only asymptotically. In the 

previous example, t0 = 6, while StrS
at,sg(t) reaches 1 asymptotically because all the sequences include attacks 

with a success probability strictly lower than 1.  Assume both times exist and consider at as a force acting on 
the shape of S. This force is ineffective till t0 when the escalations of at begin to change the shape of S. As t 
increases, the selection strategy of at and its attributes become less and less critical because the time at has 
available increases. S definitively cracks after t1 because at always selects and implements an escalation that 
leads to g. t1 - t0 evaluates how long S resists to at, at least partially, before cracking.   

t0 depends on both the attack execution times and the length of the shortest escalation to g in sg. t1 depends 
on the success probability of attacks in at sequences. This probability determines the time to implement a 
sequence as it constrains the number of repetitions of a failed attack. t1 - t0 depends on both the standard 
deviation of the lengths of the escalations to g and the success probabilities of their attacks. These 
dependencies show that StrS

at,sg(t) measures cyber robustness more accurately than metrics that only consider 
average values, such as the average time or the average number of attacks in an escalation to g. In fact, these 
metrics cannot measure the interval of time S can withstand the attacks of at.    

The inverse of the stress SurS
at,sg(t) = 1 - StrS

at,sg(t) is a survival function [37] that plots the probability that S 
survives to the attacks of at to reach a goal in sg.   

We can compute the stress of a set of attacker sa provided that they have the same goals in sg. At each time, 
the stress due to sa is the largest stress of its attackers:  

StrS
sa,sg(t) = max{at ∈ sa, StrS

at,sg(t)} 
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If the stress is always due to the same attacker atm in sa, then we denote atm as the most dangerous attacker 
that always reaches a goal before the other ones.    

In general, if the attackers in sa have distinct goals, they also have distinct motivations and result in distinct 
impacts. We may define the resulting stress as the weighted average of those of the attackers in sa. The 
weight of an attacker evaluates its contribution to the overall stress. In the following, we consider the stress 
due to attackers with the same goals only.    

A Monte Carlo method can overcome the lack of a closed form expression and approximate StrS
at,sg(t) as the 

percentage of runs in an Haruspex experiment where the agent ag that models at reaches a goal in sg before 
t. We denote this approximation by replacing StrS

at,sg(t) with StrS
ag,sg(t). The experiment simulates ag for at 

least t and it reaches the confidence level of interest on the time ag takes to reach a goal in g. This level is 
also the one of the approximation through StrS

ag,g(t).  Similar considerations apply to the stress of a set of 
attackers where we refer to the most dangerous agent and not to the most dangerous attacker.    

StrS
at,sg(n) is an alternative definition of stress where n is the largest number of attacks at can execute to reach 

a goal in sg. Obviously, n also counts failed attacks. StrS
at,g(n) relates the stress to the number of attacks 

instead than to the time to implement them. This focuses on the work of at instead than on available time. 
However, StrS

at,g(n) neglects the collection of information about S to select an attack sequence. Obviously, 
we cannot deduce a closed form for StrS

at,g(n) and we approximate it through the percentage of runs in a 
Haruspex experiment where the agent ag that models at reaches g by executing, at most, n attacks. We 
denote this approximation by StrS

at,g(n). 

4.2 Impact Function 

StrS
at,g(t)  evaluates how long it takes at to acquire the control of S. This time is critical to evaluate the owner 

loss because at  produces a loss only when it controls some modules. A typical example is a terrorist aiming 
to shutdown an ICS to sabotage a production plan or to create a large-scale pollution. In a commercial 
context, at may aim to steal some intellectual property or to reduce the efficiency of a production plan. The 
loss for the owner of S is related not only to StrS

at,g(t)  but also to the time at  owns the access rights in g 
before S discovers its attacks. For this reason, we also introduce an impact function ImpS

at,sr(t). ImpS
at,sr(t) = l 

implies the owner loss is l if at owns the rights in sr for t 

ImpS
at,sr(t) is monotone non decreasing in t and ImpS

at,sr(0) = 0 but its shape fully depends on both S and at 
motivations. To analyse these dependencies we suppose that at aims to read some information in S to steal 
some IP. Let us suppose the time to exfiltrate the information is ts. ImpS

at,sr(t) increases if t belongs to 0…ts 
and it is constant for larger values. The second order derivative of ImpS

at,sr is strictly negative in 0…ts anytime 
the exfiltration of further information has a decreasing contribution to the overall loss. The same derivative 
increases for t in 0…ts1 and decreases for t in ts1…ts  if the exfiltration of further information initially 
increases the loss but the contribution of further information decreases. ts depends on the amount of 
information to steal as well as on at risk tolerance. In fact, the probability S detects an exfiltration increases 
with the communication bandwidth it exploits.  Hence, at can reduce the exfiltration time by using a larger 
bandwidth at the cost of increasing the probability of being discovered.  

Impact functions with a positive, decreasing first order derivative also model the loss due to data loss. Now 
at needs the privilege of updating the data to overwrite them with some garbage. This requires a time ts that 
increases if the overwrite has to be stealthy.    

Suppose now that S is an industrial control system, ICS, and that at aims to sabotage the production or to 
damage the production plan. Stuxnet is a well known example of the latter [38,39]. The first order derivative 
of ImpS

at,sr(t) is constant and the second order one is zero if at aims to sabotage the production. We adopt the 
same function even when at aims to steal some information provided that S steadily produces new 
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information to steal. If at aims to damage the plan, ImpS
at,sr(t) steadily increases till it reaches a threshold

value td and is constant for larger times. The second order derivative of ImpS
at,sr(t) increases in the interval

0…td if the cost of restoring the ICS increases with the time at controls it.  

In the following, we use ImpS
ag,sr(t) instead of ImpS

at,sr(t) to denote the approximation through the output of a
Haruspex experiment where ag models at. Furthermore, sr is always a set of goal sg of some agents. We also 
assume that ImpS

ag,sg(t) is defined for any value of t even if some mechanisms of S can discover an escalation
or its results, i.e. an illegal file update. This introduce an upper bound on t that reduces the overall loss.  

5.0 STRESS AND RETURN OF A SECURITY INVESTMENT 

We discuss now the widely used assumption that any security investment to remove any vulnerability of S 
always has a non negative return. We can rephrase this assumption by saying that StrS

at,sg(t) decreases when
the number of vulnerabilities of S decreases. We have experimentally verified this assumption is not true 
because a reduction in the number of vulnerabilities of S may increase StrS

at,sg(t). Hence, the patching of a
vulnerability or the deployment of a countermeasure may actually increase an attacker success probability.   

To explain why a lower number of vulnerabilities may increase an attacker success probability, consider that 
at has only a partial information on S and that StrS

at,sg(t) is related to the sequence at can select and to the
probability it selects each sequence. Hence, at may select some escalations with a low success probability or 
a sequence longer than an escalation because some of its attacks are useless.  The patching of some 
vulnerabilities of S may stop some of these escalations and force at to select further escalations it believes are 
worse than the stopped ones. The (owner) problem is that these escalation are actually better than those at 
previously selected even if at is not aware of it. This is actually another instance of the Braess's paradox [40] 
that shows that a larger number of paths may increase traffic congestion. In ICT security, a lower number of 
paths reduce the time to reach a goal as it increases the probability of selecting the best escalations.  

This confirms that not only StrS
at,sg(t) takes into account a large number features of S and of at but it can also

relate some features of S to those of at.   

The only solution to avoid the Braess's paradox in ICT is to evaluate the cyber robustness of a new version 
before its deployment. This requires to predict the behaviour of the attackers against the new version. 

6.0 EXPECTED LOSS IN AN INTERVAL 

Each metric of the owner loss at a time t we consider splits the time interval 0..t into the time the attacker 
takes to reach a goal and the one it owns the rights it has acquired.  

The metric AvLossS
ag, sg(t) evaluates the owner average loss at t due to the agents in sa that aim to reach the

goals in sg. This metric is monotone not decreasing in t, and AvLossS
ag, sg(0)=0.

6.1 AVLoss: One Agent with One Goal 

If ag  is an agent that aims to reach g and  Str'Sag, sg(t) is first order derivative of StrS
ag, sg(t) then

AvLossS
ag,g(t) = ∫ t' ∈ 0..t Str'Sag, sg(t’) ImpS

ag,g,i(t-t’)dt’.

AvLossS
at,g(t) is the sum for t’ in the interval 0…t of the loss that ag produces if it reaches g at t’. The weight

of each loss is the probability ag owns the rights in g for t-t’. This has the same probability that ag reaches g 
at t’. In turn, this is the first order derivative of StrS

ag, sg(t) at t’. Obviously, a finite sum replaces the integral if
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StrS
ag, sg(t) changes in a discrete way in 0…t because now the loss is due to a finite number of 

contributions. Suppose, as an example, that StrS
ag, sg(t) linearly increases for values of t in 100…200 while 

ag always reaches a goal in sg for larger times. Since StrS
ag,sg(200)=1, StrS

ag,sg(t) = (t-100)/(100) for t ∈ 

1…100. Instead, ImpS
ag,g,i(t-t’) increases as t2 for t in the range 0…100. Then, for t ≥ 100, AvLossS

ag,g(t) = ∫t
100 

1/100 (t'2) dt'. If, instead, StrS
ag,sg(t) is a step function that increases of 1/100 at each integer in 100…200, 

AvLossS
ag,g(t) is a sum with one value for each integer in 100…200 not larger than t.   

6.2 AVLoss: More General Scenarios 

If ag aims to reaches any goal in sg = {g1, ..., gn}, AvLossS
ag,sg(t) is the sum of the losses due to the distinct 

goals in sg. Hence.   

AvLossS
ag,sg(t) =  g ∈ sg AvLossS

ag,g(t) 

This assumes that ag models an attacker that stops its attack as soon as it reaches any goal in sg. Under this 
assumption, goals in sg are mutually exclusive because at can reach at most one goal in sg.  

If sag = {a1, ..., af} and each agent in sag has the goals in sg, then  

AvLossS
sag,sg(t) =  agi ∈ sag AvLossS

agi,sg(t)  

i.e. the average loss due to a set of agents is the sum of the average loss due to each agent. We assume all the 
agents begins their attacks simultaneously.  

7.0 VALUE AT RISK FOR ICT 

CyVar is a financial metrics more accurate than AvLoss that extends the Value-At-Risk statistic to the ICT 
risk due to attackers with predefined goals. At first, we define CyVar for one agent with one goal, then we 
cover a set of goals and, lastly, a set of agents with the same or distinct goals. We assume all the agents begin 
their attacks simultaneously and that CyVar has the same confidence level of the Haruspex experiment(s) to 
generate the sample(s) to approximate the stress. 

7.1 CyVar: One Agent with One Goal 

CyVarS
ag,g(v,t) is the probability of a loss larger than v at a time t due to ag that aims to reach g.  To 

compute CyVarS
ag,g(v,t), first of all we compute t(v) as the minimum of Sle, the set with any time th where 

ImpS
ag,g(th) ≥ v. Sle includes any time th bounded by t and that results in a loss that is at least v. If Sle is empty, 

then CyVarS
ag,g(v,t)=0. Otherwise, t(v) exists and CyVarS

ag,g(v,t) is the probability that ag owns the rights in g 
for at least t(v). This is the same probability that ag reaches g in, at most, t - ti. Hence, 

Sle = { th | th ≤ t and ImpS
ag,g(th)≥ v }  

t(v) = if Sle ≠ ϕ then min(Sle) else 0  

 StrS
at,g(t-t(v)) if t(v) ≠ 0 

                                                    CyVarS
ag,g(v,t) =    

 0 if t(v) = 0 

Informally, to compute CyVarS
ag,g(v,t) we invert ImpS

ag,g(t) to discover th, the time ag has to own the rights in 
g to produce a loss v. Using th, we compute the time t(v) ag has available to reach g. Obviously, any increase 
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in th simultaneously reduces any of t(v), the probability that ag reaches g in t(v), and CyVarS
ag,g(v,t).   

The definition of CyVarS
ag,g(v,t) does not assume that ag always reaches g provided that it has available 

enough time.    

As an example, suppose that ImpS
ag,g(t)= α  t2 and that we are interested in CyVarS

ag,g(β,γ) the probability 
of a loss larger than β at γ. ag can produce a loss β if it owns the rights in g for at least √{β/α} units of 
time. This probability of this loss is the same one that ag reaches g in, at most, t=γ-√{β/α}.  Anytime t is 
positive, this probability is the stress at γ -√{β/α}. Hence,  

CyVarS
ag,g(β, γ)=StrS

at,g(γ - √{β/α}) 

This holds provided that ag starts its attacks at 0. If this occurs with a probability att(ag) then the probability 
of a loss larger than v is att(ag)  CyVarS

ag,g(v,t). This takes into account even the case of no attacks.  We can 
also define CyVarS

ag,g(v,t) if there is a probability distribution ag start its attacks at t. 

7.2 CyVar: One Agent with Alternative Goals 

If sg={g1, ..., gn}, the definition of CyVarS
ag,sg(v,t) requires we know ImpS

ag,gi(t) for each gi in sg.    

A first approximation of CyVarS
ag,sg(v,t) considers the worst outcome,i.e. the probability of the largest loss  

CyVarS
ag,sg(v,t) = max{CyVarS

ag,gi(v,t), gi ∈ sg}. 

We approximate StrS
ag,gi(t) as the percentage of runs where ag is successful in an experiment a run ends only 

when, and if, ag reaches gi.. 

A more accurate approximation considers the contribution of each goal in sg to the loss. We compute this 
approximation through an experiment where each run ends when ag reaches any goal in sg={g1, ..., gn}. 
Then, we approximate CyVarS

ag,sg(v,t) by considering each impact function ImpS
ag,gx(t) where gx ∈ {g1, ..., gn}. 

For ImpS
ag,gx(t), we consider the time tx that ag should own the rights in gx to produce an impact v and 

approximate the probability that ag reaches gx in (t - t x) through the percentage of runs where this happens. 
CyVarS

ag,sg(v,t) is the sum of all the probabilities. 

7.3 CyVar: Agents with Alternative Goals 

We define CyVarS
sa,sg(v,t) where sa={ag1, ..., agk} is a set of agents sharing the goals in sg={sg1, ..., sgk} 

under the assumption that agents in sa do not interact or cooperate so that they are pair wise independent.   

We compute CyVarS
sa,sg(v,t) by considering the alternative decompositions of v into a tuple dv with k non 

negative values {dv1, ..., dvk} where ∑j=1,k dvj=v.  pr(dv) is the probability that any agent in sa results in a loss 
not smaller than the corresponding one in dv. Because of agent independence, for each dv, pr(dv) is the 
product of the probabilities each agj result in a loss larger than dvj. For each agj, this probability is 1 if dj = 0 
and it is CyVarS

agj,sg(dvj,t) otherwise. If Sv includes any decomposition of v, then:  

CyVarS
sa,sg(v,t)=∑sd ∈ Sv pr(sd)  

This shows that this approximation computes the probability that agents in sa result in a loss larger than v in 
three steps. The first one decomposes v into a set of tuples, each with a distinct value for each agent in sa. 
For each tuple, the second step computes the probability that each agent results in the corresponding loss. A 
further decomposition may occur if sg includes more than one goal. The third and last step sums all the 
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probabilities.  

As an example, if sa = ={ag1,  ag2}  we compute CyVarS
sa,sg(100, 200) by decomposing 100 into 101 sets 

with the structure {v, 100-v} where v  0…100. Then,   

CyVarS
sa,sg(100, 200) = ∑(v ∈ 0..100) CyVarS

ag1,sg(v, 200) · CyVarS
ag2,sg(100-v, 200)  

8.0 AN EXAMPLE 

This section applies the proposed metrics to three versions of an ICS that supervises and controls power 
generation. The first version is a real system actually in use. The owner wants to evaluate a security 
investment to select and deploy one of the two other versions. We analyse these versions through the 
alternative metrics to quantify the return of an investment that deploys one of them. 

8.1 The Three Versions 

Any ICS version is an ICT network segmented into four types of subnets: Central, Power Context, Process, 
and Control. The structuring of each version into subnets follows a defence-in-depth strategy.    

Users of the intranet run the business processes of power generation through the nodes in a Central subnet. 
The plant operators interact with the SCADA servers through the nodes in a Power Context subnet. The 
SCADA servers and the systems in a Process network control power generation. Finally, the ICS drives the 
plant through some programmable logical components, PLCs, in a Control subnet.    

S1, the version of the ICS actually in use, [41] includes 49 nodes segmented into six subnets, see Fig. 8-1. 
The Central subnet includes 24 nodes, the Power Context includes 7 nodes. Then, Process subnet 1 and 2 
include, respectively,  9  and 7 nodes. There is a connection from each Process subnet to a Control subnet 
with one PLC. Three nodes connect the Central subnet to the Power Context one. Two pairs of nodes in the 
Power Context network are connected to those in one Process subnet. Lastly, there is a connection from two 
nodes in each Process subnet to the corresponding Control subnet.  S2, the second ICS version, doubles the 
number of nodes by replicating each node without altering the number of connections between subnets.  
Lastly, S3 includes 98 nodes as S2 but it is a more accurate implementation of the defence-in-depth strategy 
because it splits the Central subnet into two subnets, see Fig. 8-2. Each subnet includes 24 nodes and there is 
connection from one subnet to the Power Context subnets. 

8.2 Modelling Attackers and Their Impact 

Any attacker aims to control the generation plan to reduce its efficiency. Under these assumptions, if it 
controls a PLC for a time t, the loss is Low · t. Furthermore, the loss increases with the number of PLCs the 
attacker controls. Hence,  ImpS

at,g(t) = n · Low · t where n is the number of PLCs that at controls for a time 
t. Initially, each attacker only owns some rights on a node in the Central subnet. 

We introduce four classes of agents, T1, ..., T4, to describe a scenario. All the agents have one goal and those 
in the same class have the same goal but adopt distinct selection strategies. Haruspex introduces classes with 
agents that only differ because of their selection strategies to handle the uncertainty due to the lack of 
information on the attacker preferences.  The assessment can analyse the losses due to agents in the same 
class to discover the most dangerous one. Since agents in the same class cover uncertainty about attacker 
preferences, when analyzing the loss due to some agents we always assume they belong to distinct classes. 

T1  agents aim to control both the PLCs in the ICS. Hence, their goal g1 includes access rights on both PLCs.  
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8.3 Stress of each Version 

In the following, we use hours as time units. Fig. 8-3, Fig. 8-4, and Fig. 8-5 show the stress curves of the 
most dangerous agent in each class for each ICS version. The confidence level of these curves is 95%.   

According to the figures, in S1 the most dangerous T2 agent reaches g2 in about twelve hours. Any agent in 
another class reaches its goal in about fourteen hours, i.e. about two hours later. The most dangerous agent 
for S2 is a T2 agent that reaches g2 in about 21 hours. Other agents take one more hour. Both T3 and T4 agents 
take longer than a T2 agent that can freely choose which PLC to control.   

In S3, each agent takes longer to reach its goal than in S2. The difference is low because a T2 agent reaches g2 
only 20 minutes later than in S2. The remaining agents reach their goal after more than two hours.   

As expected, S1 is the most fragile version because of the low number of attacks an agent needs to reach a 
goal. The number of nodes in S2 confuses the agents and increases both the time to acquire information on 
the nodes and the one to reach a goal. Finally, S3 is the most cyber robust version because its number of 
nodes and that of subnets increase both the number of attacks agents have to execute and the time to reach a 
goal. This results in the lowest stress. 

8.4 AVLoss for the Three Versions 

For each version, we consider the average loss due to the most dangerous agent. To simplify the analysis we 
use a linear interpolation of the stress function. For all the system the average loss increases with t2. In a first 
interval, the coefficient is half the slope of the line interpolating the stress function. Then, the coefficient is 
1/2. The critical difference is in the position of the first interval. In the first version, AvLoss(t) is positive after 
eight hours and twenty minutes and it increases as t2/2 after a bit more than 14 hours. Instead, in S2, the
corresponding interval begins after 14 hours and it ends after a bit more than 22. Hence, in this version the 
loss begins when in the other it is peaking. Lastly, in S3 this interval ends after 24 hours. 

8.5 CyVar for the Three Versions 

Let us assume that Low=10 and that we aim to assess and manage the risk due to agents in T1, ..., T4 if V = 
100 and t = 24 hours. The impact of ag in the T1 class is V if it owns the rights in g1 for V/(2 · Low)= 
100/20=5 hours. Hence, ag should reach g1 in less than 19 hours. In S1, the most dangerous T1 agent always 
reaches g1 in less than 19 hours. Hence, CyVarS1

ag,g1(100, 24)=1 and the owner suffers this loss in 24 hours
anytime a T1 agent targets S1. The situation strongly changes in S2 where the probability that a T1 agent 
results in a loss equal to 100 belongs to the range [0.2 … 0.3]. Lastly, CyVarS3

ag,s(100, 24)=0 because in S3 a
T1 agent cannot reach g1 in 19 hours. Hence, the owner can avoid any loss by deploying S3. This deployment 
is cost effective if its cost is lower than 100.   

The impact of ag in the T2 class is V if it owns the rights in g2 for 10 hours. Hence, ag should reach g2 in less 
than 14 hours. This always happens in S1, i.e. CyVarS1

ag,g(100, 24)=1. Instead, this never happens in both S2
and S3, i.e. CyVarS2

ag,g2(100, 24) = CyVarS3
ag,g2(100, 24)=0. When considering T3 and T4 agents, the

investment to change the structure of the ICS from S2 to S3 has no return because these agents cannot achieve 
their goals in the interval of interest when attacking S2. Instead, the return of the investment to change the 
ICS structure from S1 to S2 is positive because it actually reduces the agent impacts.  

Consider now a T3 agent and a T4 one that begin their attacks simultaneously. These agents aim to control a 
distinct PLC and are independent, because they do exchange privileges or information. Hence, their impact is 
V if the sum of the times they own the rights in, respectively, g3 and g4 is larger than 10 hours.  
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Figure 8-3: First Version: Stress Curve of the Most Dangerous Agents 

Figure 8-4: Second Version: Stress Curve of the Most Dangerous Agents 

Figure 8-5: Third Version: Stress Curve of the Most Dangerous Agents 

At first, we consider a decomposition where each agent owns these rights for, at least, 5 hours. This implies 
each agent should reach its goal in at most 19 hours. This always happens in S1, i.e. CyVarS1

sa,sg(100, 24)=1.
In S2, there is a 0.6 probability that one agent reaches g3 in less than 19 hours while there is a 0.5 probability 
the other reaches g4 in the same time. Hence, the joint probability is 0.3. These probabilities change only 
slightly in S3.   

In an alternative decomposition, one agent owns the rights for 6 hours and the other for 4 hours. Hence, the 
first should reach its goal in less than 18 hours while the second one has, at most, 20 hours available. In S2, 
the probabilities of the two events are, respectively, 0.9 and 0.3 and the joint one is 0.27. This shows that 
CyVarS2

sa,sg(100, 24)>0.5 because we have considered just two of the possible decompositions.

In S3, the probabilities of the two events are, respectively, 0.3 and 0.6 and the joint one is less than 0.2. 

To compute the largest loss due to the two agents and the corresponding CyVar, we consider the agent 
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contributions and the corresponding probabilities. This analysis for S2 shows that the T3 agent can own the 
rights in its goal for, at most, 10 hours out of a 24 hours interval. Instead, the other agent can own the rights 
in its goal for a bit less than 9 hours.    

We determine the lowest impact by considering that both agents own the rights in the corresponding goal for 
at least 2 hours. Hence, the impact of agents in sa ranges from 100(10+9) to 100(2+2). The corresponding 
impact for S3 is similar and this further confirms the low return of the investment to change S2 into S3. 

9.0 CONCLUSION 

Cyber robustness measures the ability of an ICT system of resisting to attackers that escalate their privileges 
through a sequence of attacks. We have proposed alternative metrics for this ability. The security stress 
considers the probability attackers reach their goals in a time interval. CyVar and AvLoss use the stress to 
compute, respectively, the probability of a loss in an interval and the average loss in an interval. We can 
evaluate the metrics we have proposed through the sample that the Haruspex suite returns by simulating the 
attackers. Obviously, distinct tools and alternative approaches may be adopted to compute the sample or to 
approximate the metrics.  

We have applied the proposed metrics to three versions of an ICS in a scenario where attackers have distinct 
goals. The metrics measure the return of an investment to change the first version into one of the other ones.  

Future developments of this work concern the definition of metrics depending on the countermeasures to 
deploy to stop an attacker. These metrics will measure the work to prevent the attackers from reaching their 
goals rather than the work of the attackers to escalate their privileges. 
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